Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Pan-Cancer Analysis Reveals that the SARS-CoV-2
Receptor ACE2 is a Protective Factor for Cancer
Progression

Zhilan Zhang

China Pharmaceutical University
Lin Li

China Pharmaceutical University

Mengyuan Li
China Pharmaceutical University

Xiaosheng Wang (% xiaosheng.wang@cpu.edu.cn )
China Pharmaceutical University https://orcid.org/0000-0002-7199-7093

Research

Keywords: ACE2 expression, pan-cancer, tumor immunity and immunotherapy, tumor progression,
survival prognosis

Posted Date: July 17th, 2020
DOI: https://doi.org/10.21203/rs.3.rs-42534/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 1/14


https://doi.org/10.21203/rs.3.rs-42534/v1
mailto:xiaosheng.wang@cpu.edu.cn
https://orcid.org/0000-0002-7199-7093
https://doi.org/10.21203/rs.3.rs-42534/v1
https://creativecommons.org/licenses/by/4.0/

Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than
13 million people and has caused more than 570,000 deaths worldwide as of July 13, 2020. The SARS-
CoV-2 human cell receptor ACE2 has recently received extensive attention for its role in SARS-CoV-2
infection. Many studies have also explored the association between ACE2 and cancer. However, a
systemic investigation into associations between ACE2 and oncogenic pathways, tumor progression, and
clinical outcomes in pan-cancer remains lacking.

Methods: Using cancer genomics datasets from the Cancer Genome Atlas (TCGA) program, we
performed computational analyses of associations between ACEZ expression and antitumor immunity,
immunotherapy response, oncogenic pathways, tumor progression phenotypes, and clinical outcomes in
12 cancer cohorts. We also identified co-expression networks of ACEZin cancer.

Results: ACE2 upregulation was associated with increased antitumor immune signatures and PD-L7
expression, and favorable anti-PD-1/PD-L1/CTLA-4 immunotherapy response. ACEZ expression levels
inversely correlated with the activity of cell cycle, mismatch repair, TGF-3, Wnt, VEGF, and Notch signaling
pathways. Moreover, ACEZ expression levels had significant inverse correlations with tumor proliferation,
stemness, and epithelial-mesenchymal transition (EMT). ACE2 upregulation was associated with
favorable survival in pan-cancer and in multiple individual cancer types.

Conclusions: ACE2 upregulation was associated with increased antitumor immunity and immunotherapy
response, reduced tumor malignancy, and favorable survival in cancer, suggesting that ACE2 is a
protective factor for cancer progression. Our data may provide potential clinical implications for treating
cancer patients infected with SARS-CoV-2.

Background

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 13 million
people and has caused more than 570,000 deaths worldwide as of July 13, 2020
(https://coronavirus.jhu.edu/map.html). SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2)
as a host cell receptor to infect humans [1, 2, 3, 4]. ACE2 plays an important role in regulating
cardiovascular and renal function [5]. This protein has recently received extensive attention for its role in
SARS-CoV-2 infection [1, 2, 4]. Our recent study revealed that ACE2 is expressed in various human tissues
[6], suggesting that SARS-CoV-2 may invade various human organs besides the lungs. Also, many studies
have investigated the association between ACE2 and cancer [7-13]. For example, Yu-Jun et al. analyzed
ACE2 expression in various cancers and revealed a positive association between ACE2 expression and
survival prognosis in liver cancer [7]. Cai et al. described the genetic alteration, mRNA expression, and
DNA methylation of ACE2 in over 30 cancer types and revealed genetic and epigenetic variations of ACE2
in various cancers [8]. Several studies demonstrated that ACE2 had antitumor effects by inhibiting tumor
angiogenesis [10, 11, 13]. A recent study [14] showed that ACE2 expression was associated with
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increased tumor immune infiltration and was a positive prognostic factor in uterine corpus endometrial
and renal papillary cell cancers. Nevertheless, a systemic investigation into the association between ACE2
expression and antitumor immunity, oncogenic pathways, tumor progression phenotypes, and clinical
outcomes in pan-cancer remains lacking.

In this study, we investigated associations between ACEZ expression and antitumor immune signatures in
12 human cancer cohorts from the Cancer Genome Atlas (TCGA) program
(https://cancergenome.nih.gov/). We also explored associations between ACEZ expression and multiple
tumor phenotypes, including cell proliferation, stemness, epithelial-mesenchymal transition (EMT),
oncogenic signaling, and clinical outcomes in these cancer cohorts. We also investigated the association
between ACEZ expression and immunotherapy response in four cancer cohorts receiving the immune
checkpoint blockade therapy. This study aimed to provide new insights into the association between
ACE2 and cancer and the potential association between cancer and SARS-CoV-2 infection.

Methods
Datasets

From the genomic data commons data portal (https://portal.gdc.cancer.gov/), we obtained RNA-Seq gene
expression profiling datasets (level 3 and RSEM normalized) for 12 TCGA cancer cohorts. The 12 cancer
cohorts included cervical squamous-cell carcinoma (CESC), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), kidney renal clear cell carcinoma (KIRP), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), skin cutaneous melanoma (SKCM), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), and ovarian carcinoma (0V). We log2-transformed all RSEM-normalized gene
expression values before further analyses. Besides, we obtained gene expression profiling and clinical
data in four cancer cohorts receiving anti-PD-1/PD-L1/CTLA-4 immunotherapy from their related
publications, including Nathanson (melanoma) [15], Topalian (melanoma) [16],Ascierto (renal cell
carcinoma) [17], and Snyder (bladder cancer) cohorts [18]. A summary of these datasets is presented in
Supplementary Table S1 (Additional file 1).

Evaluating the enrichment levels of immune signatures,
pathways, and tumor phenotypes

We evaluated the enrichment level of a pathway or tumor phenotype in a tumor sample by the single-
sample gene-set enrichment analysis (ssGSEA) score [19]. The gene set included all marker genes of a
pathway or tumor phenotype. A total of six cancer-associated pathways (cell cycle, mismatch repair, TGF-
B, Wnt, VEGF, and Notch signaling) and three tumor phenotypes (cell proliferation, stemness, and EMT)
were analyzed. We presented the marker genes of these pathways and tumor phenotypes in
Supplementary Table S2 (Additional file 2).

Gene-set enrichment analysis
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We defined high-ACE2-expression-level (upper third) and low-ACE2-expression-level (bottom third) tumors
in each cancer type based on ACEZ2 expression profiles. We identified the KEGG [20] pathways highly
enriched in both groups of tumors using GSEA [21] with a threshold of adjusted p-value < 0.05. Moreover,
we used WGCNA [22] to detect the gene modules (gene ontology) differentially enriched between the high-
and low-ACEZ2-expression-level tumors in pan-cancer. We identified the hub genes as the genes connected
to at least 5 other genes with a connectedness weight greater than 0.25 in a gene module and built their
co-expression network.

Statistical analysis

We used Spearman’s correlation test to evaluate the correlation (p) of ACE2 expression levels with the
enrichment levels of pathways or tumor phenotypes, which were not normally distributed. We used
Pearson's correlation test to evaluate the correlation (r) of ACEZ expression levels with the ratios of
immune signatures, which was the log2-transformed values of the ratios between the mean expression
levels of all marker genes in immune signatures and was normally distributed. We used the Benjamini
and Hochberg method [23] to calculate the FDR for adjusting for multiple tests. We compared overall
survival (0S), disease-specific survival (DSS), progression-free interval (PFl), and disease-free interval
(DFI) between the high- and low-ACE2-expression-level tumors. We utilized Kaplan-Meier curves to display
survival time differences and the log-rank test to evaluate the significance of survival time differences.
The R package "survival" was used to perform the survival analyses.

Results

Association of ACE2 expression with immune signatures and immunotherapy response in cancer

GSEA [21] identified many immune-related pathways highly enriched in the high-ACE2-expression-level
tumors at least 5 cancer types. These pathways included cytokine-cytokine receptor interaction,
hematopoietic cell lineage, viral myocarditis, natural killer cell-mediated cytotoxicity, chemokine signaling,
Jak-STAT signaling, primary immunodeficiency, antigen processing and presentation, autoimmune
thyroid disease, T cell receptor signaling, intestinal immune network for IgA production, B cell receptor
signaling, systemic lupus erythematosus, Leishmania infection, NOD-like receptor signaling, and
epithelial cell signaling in Helicobacter pylori infection (Fig. 1A). Moreover, we found that ACE2
expression levels positively correlated with the pro-/anti-inflammatory ratios in pan-cancer (Pearson’s
correlation test, r=0.26, p=3.31x 10" 74) and in 11 individual cancer types (adjusted p-value (FDR) <
0.05) (Fig. 1B). This suggests that ACE2 expression has a stronger positive association with the pro-
inflammatory signature than the anti-inflammatory signature in these cancer types. Altogether, these
results suggest a prominent positive association between ACE2 expression and antitumor immune
signatures in cancer. We found that ACEZ had a positive expression correlation with PD-L 7 in pan-cancer
and in 6 individual cancer types (FDR < 0.05) (Fig. 1C). We expected that the ACE2 expression would have
a positive association with the response to anti-PD-1/PD-L1/CTLA-4 immunotherapy. We confirmed the
anticipation in four cancer cohorts receiving immune checkpoint blockade therapy. In these cohorts, the
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high-ACE2-expression-level (> median) tumors displayed a higher rate of immunotherapy response than
the low-ACE2-expression-level (< median) tumors (67% versus 17%, 80% versus 40%, 40% versus 20%, and
46% versus 25% for Nathanson (melanoma), Topalian (melanoma), Ascierto (renal cell carcinoma), and
Snyder (bladder cancer) cohorts, respectively) (Fig. 1D). As a result, the former had better overall survival
(0S) than the latter in the Nathanson cohort, which had related data available (log-rank test, p=0.036)
(Fig. 1E). These results suggest that the ACEZ expression is likely to be a positive predictor for anti-PD-
1/PD-L1 immunotherapy.

Association of ACE2 expression with oncogenic pathways and tumor phenotypes in cancer

We quantified the activity of a pathway using the single-sample gene-set enrichment analysis (sSGSEA)
[19] score of the set of genes included in the pathway. We found that ACE2 expression levels inversely
correlated with the activity of cell cycle, mismatch repair, TGF-8, Wnt, VEGF, and Notch signaling
pathwaysin 9, 6,9, 7, 6, and 7 individual cancer types, respectively (Spearman’s correlation test, FDR <
0.05) (Fig. 2A). Moreover, we found that ACEZ2 expression levels had a significant inverse correlation with
the expression levels of MKI67, which is a tumor proliferation index marker, in pan-cancer and 8 individual
cancer types (Pearson’s correlation test, FDR < 0.05) (Fig. 2B). Tumor stemness represents a stem cell-like
tumor phenotype associated with tumor progression, metastasis, immune evasion, and drug resistance.
We found that ACEZ expression levels showed a marked negative correlation with tumor stemness scores
(ssGSEA scores) in pan-cancer and in 9 individual cancer types (FDR < 0.05) (Fig. 2C). EMT plays an
outstanding role in facilitating malignant transformation, tumor progression, and metastasis. We
observed a marked negative correlation between ACEZ expression levels and EMT signature scores
(ssGSEA scores) in 11 individual cancer types (FDR < 0.05) (Fig. 2D). Overall, these data indicate that
ACE2 is a protective factor for cancer progression. Indeed, survival analyses showed that ACE2
upregulation was associated with favorable survival in pan-cancer (log-rank test, p< 0.001 for OS, DSS,
PFl, and DFI) and in KIRC, KIRP, LUSC, and OV (log-rank test, p< 0.05 for OS, DSS, PFI, and/or DFI)

(Fig. 2E). Furthermore, we found that ACE2 expression levels significantly increased with the tumor
advancement in KIRC (two-sided Student’s ttest, p<0.01, fold change > 1.5 for high-grade (G3-4) versus
low-grade (G1-2), late-stage (stage llIHV) versus early-stage (stage I-l), large tumor size (T3-4) versus
small tumor size (T1-2), without regional lymph nodes (NO) versus with lymph nodes (N1-3), and no
metastasis (M0) versus metastasis (M1)) (Fig. 2F).

Identifying interaction networks of ACE2 in cancer

We identified 200 and 24 genes having marked positive and negative expression correlations with ACE2
in pan-cancer, respectively (|4 > 0.5) (Fig. 3A). WGCNA [22] identified four gene modules (indicated in
yellow, red, pink, and turquoise color, respectively) highly enriched in the high-ACE2-expression-level
tumors and three gene modules (indicated in black, blue, and green color, respectively) highly enriched in
the low-ACE2-expression-level tumors (Fig. 3B). The GO terms highly enriched in the high-ACE2-
expression-level tumors mainly included immune response, induction of bacterial agglutination,
regulation of microvillus length, and epidermal cell differentiation. In contrast, the GO terms highly
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enriched in the low-ACEZ2-expression-level tumors mainly included cell cycle, nervous system process, and
microtubule-based process (Fig. 3B). Again, these results indicate that ACEZ expression has a significant
positive association with antitumor immune response and a significant negative association with the cell
cycle in cancer, suggesting the protective role of ACE2 from cancer progression.

From the yellow gene module, we identified 103 hub genes mainly associated with immune-related
pathways. Among the 103 hub genes, three transcription factor (TF) genes, including EOMES, IRF4, and
TBX21, were co-expressed with many other immune-related genes, such as PDCD1, TIGIT, GZMK, IL21R,
and /L2RG (Fig. 3C). The association between these TFs and immune regulation has been well
recognized, such as EOMES (Eomesodermin) mediating the CD8* T cell differentiation [24], IRF4
(interferon regulatory factor 4) regulating immune cell development [25], and TBX21 (T-bet) playing a
pivotal role in regulating Th1 cell development [26].

Discussion

We investigated the association of ACEZ2 expression with immune signatures, oncogenic pathways, and
tumor phenotypes in diverse cancer cohorts. Our results indicate that ACE2 is a protective factor for
cancer progression. In particular, the ACE2 downregulation correlates with worse survival and tumor
advancement in KIRC, also known as clear cell renal cell carcinoma (ccRCC). Previous studies
demonstrated that ACE2 exerts antitumor effects by inhibiting tumor angiogenesis [10] and promoting
tumor immune infiltration [14]. Our results are consistent with these previous findings. Besides, we found
that ACE2 upregulation was associated with reduced cell proliferation, stemness, and EMT, as well as the
downregulation of oncogenic pathways, such as cell cycle, mismatch repair, TGF-3, Wnt, and Notch
signaling. Moreover, we found that ACE2 had a negative expression correlation with PD-L1, an
immunosuppressive molecule, and a predictive marker for an active response to immune checkpoint
inhibitors. As a result, ACE2 upregulation correlates with a favorable response to anti-PD-1/PD-L1/CTLA-4
immunotherapy.

ACE2 also plays a protective role in hypertension and heart disease [27]. Moreover, ACE2 deficiency may
exacerbate outcomes in patients with SARS-CoV-2 infection [27]. Indeed, a recent study showed that
ACE2 was downregulated in virus-infected lung tissue [14], indicating a potential protective role of ACE2
in patients with SARS-CoV-2 infection. Thus, using ACE2 inhibitors for preventing and treating SARS-CoV-
2 infections may not be an advisable strategy for individuals with hypertension, heart disease, or cancers.

Conclusions

ACEZ2 upregulation was associated with increased antitumor immunity and immunotherapy response,
reduced tumor malignancy, and favorable survival in cancer, suggesting that ACE2 is a protective factor
for cancer progression. Our data may provide potential clinical implications for treating cancer patients
infected with SARS-CoV-2.
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Figure 1

Association of ACE2 expression with immune signatures and immunotherapy response in cancer. A.
Immune-related pathways upregulated in high- (upper third) versus low-ACE2-expression-level (bottom
third) tumors in at least 5 cancer types identified by GSEA [21] (adjusted p-value (FDR) < 0.05). B.
Significant positive correlations of ACE2 expression levels with the ratios of pro-/anti-inflammatory
cytokines in pan-cancer and in 11 individual cancer types. The Pearson correlation coefficient (r) and p- or
FDR-value are shown. C. The positive expression correlation between ACE2 and PD-L1 in pan-cancer and
in 6 individual cancer types. D. Higher rate of immunotherapy response in the high-ACE2-expression-level
(> median) than in the low-ACE2-expression-level (< median) tumors in four cancer cohorts receiving
immune checkpoint blockade therapy. E. Kaplan-Meier survival curves showing better survival in high-
ACE2-expression-level (> median) than in low-ACE2-expression-level (< median) cancer patients with
immune checkpoint blockade therapy. The log-rank test p-value is shown. FDR: false discovery rate. *
FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001. They also apply to the following figures.
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Figure 2

Association of ACE2 expression with oncogenic pathways and tumor phenotypes in cancer. ACE2
expression levels are likely to inversely correlate with the activity of oncogenic pathways (A), MKI67
expression levels (B), stemness scores (C), and EMT signature scores (D) in cancer. Kaplan-Meier survival
curves showing that ACE2 upregulation is associated with favorable survival in pan-cancer and multiple
individual cancer types. Log-rank test p-values are shown. EMT: epithelial-mesenchymal transition; OS:
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overall survival; DSS: disease-specific survival; PFl: progression-free interval; DFI: disease-free interval. E.
ACE2 expression levels significantly increase with tumor advancement in KIRC. KIRC: kidney renal clear

cell carcinoma.
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Figure 3

Interaction networks of ACE2 in cancer. A. 200 and 24 genes having marked positive and negative
expression correlations with ACE2 in pan-cancer, respectively (Jr| > 0.5). B. Gene modules (gene ontology)
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enriched in high-ACE2-expression-level and low-ACE2-expression-level pan-cancer. C. Co-expression
subnetwork of the immune response module enriched in high-ACE2-expression-level pan-cancer centered
on three transcription factor genes (in yellow).
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