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Abstract

The current outbreak of Covid-19 infection due to SARS-CoV-2, a virus from the

coronavirus family, has become a major threat to human healthcare. The virus has

already infected more than 5 M people and the number of deaths reported has reached

more than 330 K which may be attributed to lack of medicine. The traditional drug

discovery approach involves many years of rigorous research and development and

demands for a huge investment which cannot be adopted for the ongoing pandemic

infection. Rather we need a swift and cost-effective approach to inhibit and control

the viral infection. With the help of computational screening approaches and by choos-

ing appropriate chemical space, it is possible to identify lead drug-like compounds for

Covid-19. In this study, we have used the Drugbank database to screen compounds

against the most important viral targets namely 3C-like protease (3CLpro), papain-

like protease (PLpro), RNA-dependent RNA polymerase (RdRp) and the spike (S)

protein. These targets play a major role in the replication/transcription and host cell

recognition, therefore, are vital for the viral reproduction and spread of infection. As

the structure based computational screening approaches are more reliable, we used

the crystal structures for 3C-like main protease and spike protein. For the remaining

targets, we used the structures based on homology modeling. Further, we employed

two scoring methods based on binding free energies implemented in AutoDock Vina

and molecular mechanics - Generalized Born surface area approach. Based on these

results, we propose drug cocktails active against the three viral targets namely 3CL-

pro, PLpro and RdRp. Interestingly, one of the identified compounds in this study

i.e. Baloxavir marboxil has been under clinical trial for the treatment of Covid-19 in-

fection. In addition, we identified a few compounds such as phthalocyanine, Tadalafil,

Lonafarnib, Nilotinib, Dihydroergotamine, R-428 which can bind to all three targets

simultaneously and can serve as multi-targeting drugs. Our study also included calcu-
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lation of binding energies for various compounds currently under drug trials. Among

these compounds, it is found that Remdesivir binds to targets, 3CLpro and RdRp with

high binding affinity. Moreover, Baricitinib and Umifenovir were found to have supe-

rior target-specific binding while Darunavir is found to be a potential multi-targeting

drug. As far as we know this is the first study where the compounds from the Drug-

bank database are screened against four vital targets of SARS-CoV-2 and illustrates

that the computational screening using a double scoring approach can yield potential

drug-like compounds against Covid-19 infection.

keywords SARS-CoV-2, 3CL protease, Papain-like protease, RNA-directed RNA poly-

merase, Spike protein, Covid-19, Drugbank database.
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1 Introduction

The viral infection affects all forms of life including birds, mammals and humans causing

severe effects on the healthcare system and economy. Most of the viral infections are con-

tagious and spread through air, water, food or exchange of body fluids. The viral infection

can lead to outbreak, or can become epidemic or pandemic based on the spreading mech-

anism and strength of virus-host cell interaction. There are many factors that dictate the

severity of a viral infection such as intrinsic pathogenicity, mortality rate, basic reproduction

number.1 It appears like the ongoing pandemic due to SARS-CoV-2 is the one of the most

adverse infections observed during recent decades. Even though the mortality rate appears

to be quite lower for this compared to previous outbreaks due to SARS and MERS viruses,

the severity, disruption to the healthcare and damage to the economy have become very

high due to its more aggressive human-to-human spread.2 After its first report in December,

2019 within 6 months time, it has spread to almost all countries, infecting more than 5 M

people. Moreover, it has been lethal to more than 330 K people. It is a challenging time

for all researchers in medicine and pharmacology to develop a vaccine, small molecular drug

or an epitope to circumvent the current case of outbreak.3 There exist standard protocols

to rationally develop such medicine from scratch for any such infections starting from gene

mining which involves targets discovery and identification of lead drug-like compounds from

structure based design. Another approach is through the high throughput experimental

screening4 of compounds from chemical space which is rather shooting for something in the

darkness. Our aim here is to present a rational approach involving computational screening

for identification of lead drug-like compounds for Covid-19 associated coronavirus.5

The genomics data encode the biomolecular machineries necessary for the life processes of

any organism including pathogens and can be used to obtain information regarding potential

targets relevant for therapy or diagnostics.6 Therefore, in order to design drugs against

viral pathogens, we need to start with the data mining of viral genome. More than 10,000

genomics data are already deposited for SARS-CoV-2 in GISAID, an open source online

platform (https://www.gisaid.org).7 It is a wealth of information which can be used to

find the routes followed by the virus to spread the infection.8 The person who caused the

infection and the person received should possess the viral genomes which are very similar

or only differ up to a few mutations. The SARS-CoV-2 genome is made of less than 30000

nucleotides and contains genes for 29 different proteins.9 The ORF1ab alone encodes as many

as 16 non-structural proteins.10 Some of the key proteins encoded by this gene are PLpro

(NSP2), 3CLpro (NSP5), RdRp (NSP12), and helicase (NSP13) which play a vital role

in the replication and transcription.11,12 The ORF2-10 encodes various structural proteins
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such as membrane protein (M), envelope protein (E), spike protein (S), nucleocapsid protein

(N) and other auxiliary proteins.12,13 The M, E and S make the viral coat while the RNA

gene is packaged within the N protein.11,12 Further, the spike protein is involved in the

host cell recognition and in particular binds to ACE2 mammalian receptor.14 Based on

their involvement in different biological processes, many SARS-CoV-2 proteins (e.g. spike

protein, PLpro, 3CLpro, RdRp, and helicase etc) can be considered as potential targets for

therapy. More specifically, for therapeutic purpose, it is essential to target enzymes involved

in viral replication as well as transcription. In addition, we need to target those catalytic

sites involved in the key enzymatic reaction. In SARS-CoV-2, the main role of 3CLpro

and PLpro proteases is to cleave the polyprotein into smaller functional units to facilitate

replication/transcription process and thus are potential targets for the therapeutics.15

Designing and screening of small molecules or peptides targeting these vital proteins

can help in developing therapeutics against the infection. High-throughput experimental

screening on viral particles or specific target could be performed to test the activity of such

compounds, however, this is expensive and time taking. In addition, extreme care needs

to be taken as it may require handling of live and potentially pathogenic viral strains. In

this study, we used an alternative approach by computational screening of compounds from

the Drugbank database16 against the selected viral drug targets using a molecular docking

approach.17,18 The Drugbank database is a chemical space of compounds approved by FDA

and molecules under drug trials (investigational and experimental). Since these compounds

are already under clinical trials or in the market, the synthesizability19 is not a problem

which is often a major problem when the compounds are designed using de novo design20

or those designed from fragments based drug discovery approaches.21 Further since many

of the compounds are approved, if they are found to be active against viral targets during

the computational screening they can be straight-away repurposed for treating Covid-19.22

Since these “approved” compounds are already verified for safety, the time associated with

the clinical trials can be significantly reduced.

The structure based screening of compounds requires 3 dimensional structure for the viral

proteins. As of now, the structures for 3CLpro, spike glycoprotein, ADP ribose phosphatase,

RNA binding domain of nucleocapsid phosphoprotein, Endoribonuclease have been reported

in the protein databank (PDB).23 The spike protein structure is based on cryogenic electron

microscopy and has been reported in two different conformations namely when it is bound to

ACE-2 mammalian receptor and in free state.24,25 In case of 3CLpro, the crystal structures

are reported for both apo form and for the co-crystallized form with certain inhibitors.26 For

computational screening, we have used the crystal structures for the two targets 3CLpro and
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spike protein. For the remaining two targets PLpro and RdRp, we carried out homology

modeling using template structures from SARS-CoV-1 which is reported to have a highly

homologous genome as SARS-CoV-2. The models were developed using SWISS-MODEL, a

web server for doing homology modeling.27

For each of the selected target protein, we identified top five compounds from a list of

“approved” drugs and another top five from the subset of “investigational” drugs. Further

the stability and binding affinity of these screened compounds have been validated using

molecular dynamics and molecular mechanics-generalized Born surface Area (MM-GBSA)

approach.28 Even though the molecular docking approaches as implemented in autodock,

AutoDock Vina and Glide are quite fast, they were shown to fail in ranking complexes in

many occasions.29 Among many force-field based scoring functions, the MM-GBSA based

ranking of protein-ligand complexes has been reported to be reliable often.29–31 This has

been the reason for choosing a double-scoring approach based on AutoDock Vina and MM-

GBSA based binding free energies in this study. In addition to identifying the lead drug-like

molecules for various targets, the study proposes the drug molecules which can target multi-

ple targets simultaneously.32 The study also involves the computational validation of many

drug compounds currently considered for drug trials33 in various countries by estimating

binding free energies using MM-GBSA approach. The trial compounds included in this

study are Remdesivir, chloroquine, Lopinavir, Oseltamivir, Ritonavir, Favipiravir, Barici-

tinib, Darunavir and Umifenovir.34–36

We also would like to recall that many researchers have screened compounds from dif-

ferent chemical-space such as natural products database37, FDA-approved compounds38,

phytochemicals39 and marine natural products40 against different viral targets by using dif-

ferent scoring functions.41 The main difference of the current study is that we have considered

four different viral targets and so we are able to propose drug cocktails effective for Covid-19

along with suggestions of drugs which are potential as multi-targeting drugs. Further we

also discussed on the computational scoring of trial compounds in a way to argue whether we

need to validate the compounds before considering for drug trials by employing cost-effective

screening approaches.

2 Computational Methods

In this section, firstly we have described methods used for proposing the three-dimensional

structure of the viral targets like PLpro and RdRp. This is followed by the description of

the computational screening approach to identify potential compounds against the targets
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for which the structures are obtained both from the homology modeling and experimental

structure elucidation approaches. For a selected set of compounds, we also carried molecular

dynamics and free energy calculations using molecular mechanics- generalized Born surface

area (MM-GBSA) approach.

2.1 Genome to viral targets

The full genome sequence of severe acute respiratory syndrome coronavirus 2 isolate Wuhan-

Hu-1 (Covid-19) (NC 045512.2) was retrieved from the National Center for Biotechnology

Information (NCBI) database.58 We identified the following sequences decoding key targets

for virus which are responsible for host cell receptor binding, replication and transcription:

spike-protein (YP 009724390.1 3), 3L-main protease(QHD43415 5 ), PLpro (QHD43415 3)

and RdRp (YP 009725307.1).

2.2 Homology modelling

PDB structures of PLpro and RdRp of Covid-19 were not available when we started the

work. Therefore, homology modelling was performed using the SWISS-MODEL server27

with default parameters using automated mode for these two targets. For both targets

templates were chosen from SARS-CoV-1. The structure for PLpro is based on the PDB id

5Y3E and for RdRp the PDB structure from 6NUR was used as a template. In the former

case, the sequence identity was 83% while in the latter case it was 96.4%. Usually, the

models based on templates having above 30% sequence identity are considered reliable. So,

high sequence identities of the templates used to build models make the obtained structures

very reliable.

2.3 Computational screening of compounds from the Drugbank

The compounds from the Drugbank database were screened against the four key viral targets:

3CLpro, PLpro, RdRP and spike protein. For the 3CLpro and spike protein, the three

dimensional structures were taken from PDB database. For the remaining two targets, we

used the structures from homology models which is described in the previous section. The

current version of the Drugbank database (v5.1.5) contains 13,529 drug entries including

2,630 approved small molecule drugs, 1,371 approved biologics, 131 nutraceuticals and over

6,354 experimental drugs. In particular, we only retrieved the subset of the Drugbank

database compounds having three dimensional structure and there are about 8773 such

compounds. The structure data file (SDF) format of compounds were retrieved from the
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Drugbank database(v5.1.5).16 and with the use of openbabel software, the three dimensional

structure for these compounds have been generated. Further, using the autodocktools, the

Gasteiger type charges were generated for all these compounds and for the targets. The

compounds were screened against the four targets mentioned above using AutoDock Vina

software.59

Often protein contains multiple binding sites, therefore, recognition of the optimal bind-

ing site in appropriate domain is significant to study the interaction between the protein

and the inhibitory compound(s). The spike glycoprotein contains receptor binding domain

(RBD) responsible for host cell recognition and binding to the Angiotensin Converting En-

zyme 2 (ACE2) mammalian receptors. Moreover, this domain undergoes significant confor-

mational change before binding to ACE-2 receptors. The structures for the spike protein

in its free state (referred generally as closed state) and in its prefusion state (open state)

have been solved using cryo-EM experiments.24,25 Since the open state of the RBD domain

is responsible for binding to ACE-2 receptors, we have used this conformational state for

developing therapeutics. Also the binding site has been restricted to be in the interfacial

region of the RBD domain and ACE-2 as the drug is eventually supposed to modulate the

protein-protein interaction between these two proteins. Similarly in the case of 3CLpro,

the structures are reported for both apo state and for the inhibitor bound state. We have

considered apo form as it has certain advantages. In particular, in the bound state, the

conformational states of the residues around the inhibitor might have reorganised to max-

imize interaction with the inhibitor. Therefore, this target structure may not be binding

effectively to any other ligands with different molecular volumes. The best approach is to

adopt a flexible docking but this is computationally very demanding. In this situation, the

apo form of the 3CLpro corresponds to its structure in solution and so can serve as a reliable

target for the drug design.

During the molecular docking, the grid box size was chosen so that the binding sites in

the domain responsible for key processes for viral life are targeted. The grid box dimension

was chosen sufficiently enough so that even larger molecules in the chemical space can be

identified during the screening. For example in the case of RdRp, we used a grid box

dimension of 40X40X40 (with a grid size of 0.375 Å ). The binding site for 3CLpro has been

identified based upon its co-crystallized structure with inhibitor, N3.45 Similar, the binding

site for PLpro has been chosen based on the location of GRM inhibitor as in PDB structure

3MJ5. We used Lamarckian algorithm to identify the best binding modes and poses for the

ligands within the binding sites.

The molecular docking using AutoDock Vina employs a scoring function which is sum
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of van der Waals energy, electrostatic, hydrogen bonding interaction energies between the

protein-ligand subsystems.60 It also includes the solvation energy which accounts for the

change in free energies due to aqueous environment in which protein-ligand complex is em-

bedded. The scoring function also includes the entropic contributions due to conformational

degrees of freedom in the ligand. For each rotational bond, 0.2-0.3 kcal/mol entropic contri-

butions are added to binding free energies; the positive value means a more flexible ligand

will bind less strongly with the protein (based on the entropic contribution). We have used

the routine protocol for molecular docking where the protein framework is fixed while the

ligand is flexible. The ligand flexibility is included through the motion along the rotatable

bonds. Other intramolecular structural parameters such as bond lengths and bond angles

are not altered during the docking. This procedure is efficient but does not account for the

effect due to protein flexibility to the binding affinity. So, for the selected ligands, we have

carried out all atom molecular dynamics and the free energies of binding were estimated as

an average over a few hundreds configurations.

2.4 Molecular dynamics simulations and Free energy calculations

Molecular dynamics (MD) simulations require the force-fields (charges and Lennard-Jones

parameters and parameters to describe intramolecular structure) to describe the subsystem

interactions and initial structures for the protein-ligand complex systems. The most stable

protein-ligand complex structure obtained from molecular docking study has been used as

the starting configuration for MD simulations. The ligand structure in its bound state to

the target protein has been used for computing the electrostatic potential fitted charges

by employing Gaussian16 software.61 For this set of calculations, we have used B3LYP

functional and 6-31+G* basis sets. Thus obtained ESP charges and GAFF62 force-field,

together describe the interaction of ligand with protein and solvents. For the protein targets,

we used FF99SB force-field and the water solvent has been described using TIP3P force-field.

The protein-ligand complexes were solvated and neutralized by adding sufficient numbers of

counter-ions. Among the four different targets studied, the spike protein is the largest one.

Setting-up MD for whole spike protein (including both S1 and S2 domains and the three

chains) with a solvent box with 8 Å cut-off yielded, approximately 400000 atoms. Therefore,

the calculations were done for the RBD binding domain of spike protein and ACE-2 receptor.

In remaining cases, the whole target proteins were included in the MD simulations. Firstly,

a minimization run was carried out followed by MD simulations in an isothermal-isobaric

ensemble. The temperature and pressure were set to correspond to ambient condition (300

K and 1 atm pressure). The time step for integration of the equation of motion was 2 fs and
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initially an equilibration was carried out for 5 ps. Followed by this, production runs for a

total time scale of 40 ns were carried out. The convergence of energetics and other structural

properties (such as densities) during the production runs has been verified. All the MD

simulations were carried out using AMBER16 software.63 The 500 configurations selected

from the last 5ns were used for the subsequent MM-GBSA calculations. This approach

employs an implicit solvent model for computing the solvation energies. The polar solvation

free energies are obtained using generalized Born approach while the nonpolar solvation free

energies are obtained from solvent accessible surface area. The protein-ligand energies are

obtained as the sum of van der Waals and electrostatic energies in this scheme. The free

energies of binding which are the sum of these four contributions are computed using the

MMPBSA.py script64 as implemented in the Amber16 software.

3 Results and Discussion

In this study, we identified several compounds from the Drugbank that are predicted to bind

to individual target proteins with high affinity (Table 1-3). In addition, we also identified

compounds that potentially interact with two or more viral proteins (Table 4). In the context

of SARS-CoV-2 viral therapeutics,32,42 binding of a drug molecule to a single or multiple

targets can be of significance depending upon the different stages of the viral infection. For

instance, during the host cell recognition only the spike protein of SARS-CoV-2 plays a

key role and can be targeted. However, once the infection occurs, other proteins associated

with transcription and replication processes are expressed. In this case, it is advantageous

to use a drug which targets multiple proteins or cocktail of drugs with each drug having

significant binding affinity towards a specific target. Apparently, it has been discussed that

due to the complexity involved in the development of infection, it is desirable to target

multiple targets with many low affinity ligands instead of targeting a single target with

high affinity ligand.42 This also has an advantage that even when a specific target mutates

rapidly, the other targets can be inhibited by the drug cocktails which eventually makes the

treatment effective. Such combination of drugs subscription is already in practice for viral

infections.43 In case of HIV treatment, a combination of drugs belonging to categories such

as nucleoside reverse transcriptase inhibitor, non-nucleoside reverse transcriptase inhibitor,

protease inhibitor and integrase inhibitor has been successfully tested.44 For example, a

FDA-approved drug Combivir is a mixture of AZT and 3TC and targets enzymes which

appear in the early and later stage of HIV replication.43
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3.1 Potential compounds from the Drugbank database against the

four key viral target proteins

Based on the larger binding affinity towards each of the selected Covid-19 targets i.e. 3CLpro,

PLpro, RdRp, spike-protein, top five FDA-approved compounds were selected from the

Drugbank database (Table 1). In addition, we also selected another top five compounds

showing higher binding affinities which are in the investigational/experimental stage at the

moment (Table 1). In general, it was observed that the compounds belonging to the latter

category have higher binding affinity as compared to the FDA-approved compounds (Table

1). This may be due to significantly higher number of compounds in the investigational

category as compared to the subset of FDA-approved compounds in the Drugbank database.

It is also supported by the fact that the use of a larger chemical space, will result in identifying

compounds with better binding affinity and specificity towards specific targets.

Table 1: The compounds selected from the Drugbank database based on their binding affinity

for the four vital targets in Covid-19. The binding affinities are given in kcal/mol

3CLpro PLpro RdRp Spike

Approved

Olaparib (-9.2) Tadalafil (-9.2) Lumacaftor (-9.9) Dexamethasone

metasulfobenzoate (-10.4)

Baloxavir marboxil (-8.9) Metocurine(-9.0) Ergotamine (-9.4) Nilotinib (-9.9)

Entrectinib (8.7) Lorlatinib (-9.0) Natamycin(-9.4) Sonidegib (-9.8)

Dexamethasone

metasulfobenzoate (-8.7) Lumacaftor (-8.9) Dihydroergotamine (-9.3) Enasidenib (-9.8)

Tadalafil (-8.7) Natamycin (-8.8) Imatinib (-9.3) Regorafenib, Lifitegrast

Capmatinib (-9.7)

Investigational

LY-2090314 (-10.3) Zoliflodacin (-9.8) Phthalocyanine (-10.6) Lifirafenib (-10.7)

10-hydroxy

camptothecin (-9.3) JE-2147 (-9.7) RU85053 (-9.9) Resiniferatoxin (-10.6)

Tivantinib (-9.0) Phthalocyanine (-9.6) Laniquidar (-9.9) JTK-853 (-10.6)

Lurtotecan (-9.0) Quarfloxin (-9.5) CD564 (-9.8) Tegobuvir (-10.5)

Zk-806450 (-8.9) CP-609754 (-9.5) Golvatinib (-9.8) PCO-371 (-10.5)

10



(a) (b)

Figure 1: (a) The spatial overlap of binding modes for various high affinity compounds for

3CLpro. The ligands having binding free energies less than -9.0 kcal/mol were chosen. (b)

Comparative binding mode of the best binder with that of N3 inhibitor (shown in red color).

3.1.1 3CLpro inhibitors

The selected top five FDA-approved compounds showing high affinity for 3CLpro protein are

Olaparib, Baloxavir marboxil, Entrectinib, Dexamethasone metasulfobenzoate and Tadalafil

(Table 1). The binding affinities are in the range of -8.7 to -9.2 kcal/mol (Table 1). In

this list Olaparib and Entrectinib are anticancer compounds while Baloxavir marboxil is an

antiviral compound shown to be active against influenza A and B viruses. Even though

the Drugbank database contains many antiviral compounds, only Baloxavir marboxyl (BM)

showed high score against 3CLpro target of SARS-CoV-2. It is worth mentioning that

this compound is being considered for drug trials along with other antiviral compounds

such as Oseltamivir and Umifenovir by the company Shionogi, Toyama Chemical.33 Drug

repurposing is considered as an expeditious approach to find potentially active compounds

against Covid-19 associated viral targets and the advantage is that these compounds have

favourable ADME/T properties. We also selected other five compounds showing high binding
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affinity towards 3CLpro and are listed under the investigational category in the Drugbank

database (Table 1). The compounds are LY-2090314, 10-hydroxycamptothecin, Tivantinib,

Lurtotecan and Zk-806450. These compounds have binding free energies in the range of

-8.9 to -10.3 kcal/mol with LY-2090314 showing the best binding affinity. Some of these

compounds are reported to have anticancer (LY-2090314, Tivantinib), and antineoplastic

(10-hydroxycamptothecin, Lurtotecan) properties.16

Since the crystal structure 3CLpro in complex with an irreversible inhibitor N3 is already

available, information about the binding site responsible for carrying out the enzymatic

reaction is known. In the Figure 1a, the binding modes of the top 10 compounds listed in

Table 1 and discussed above are shown. Just in the case of LY-2090314, we also show the

comparative binding mode with N3 inhibitor (Figure1b). It is clear that all compounds bind

to the substrate binding site which indicates that they can exert therapeutic activity by

inhibiting the replication role of this enzyme. It is worth mentioning that the N3 inhibitor is

irreversible as it forms a covalent bond with the target protein CYS145 residue.45 In contrary,

all compounds studied here are reversible inhibitors.

3.1.2 Papain-like protease inhibitors

The top five FDA-approved compounds showing high affinity towards the protein PLpro, are

Tadalafil, Metocurine, Lorlatinib, Lumacaftor, Natamycin while the compounds identified

from the “investigational” category are Zoliflodacin, JE-2147, Phthalocyanine, Quarfloxin

and CP-609754. The binding free energy range for the former set of compounds is between

-8.8 to -9.2 kcal/mol (Table 1) whereas for the latter between -9.5 to -9.8 kcal/mol (Table

1). The Zoliflodacin, a spiropyrimidinetrione type antibiotic compound is in the phase-

II clinical trials for the treatment of Neisseria gonorrhoeae infection. It acts on the type

II topoisomerases and inhibits DNA biosynthesis in bacteria.46 Interestingly, JE-2147 is a

dipeptide based antiviral compound which acts on Gag-Pol polyprotein of HIV and is show-

ing promising potency against multi-PI resistant HIV.47 The compound phthalocyanine is

an investigational drug used for photodynamic therapy of actinic keratosis, Bowen’s disease,

skin cancer, or stage I or stage II Mycosis Fungoides.16 The compound quarfloxin is also an

anticancer compound (leukemia). The compound CP-609754 is under phase-I trial for treat-

ing advanced malignant tumours and exhibits its activity as farnesyltransferase inhibitor.48

Among approved compounds, Tadalafil, Metocurine, Lorlatinib and Lumacaftor are respec-

tively used for treating erectile dysfunction, muscular relaxant, ALK-positive metastatic

non-small cell lung cancer and cystic fibrosis. Only Natamycin is an antibiotic and inhibits

fungal growth by binding to sterols (ergosterol in particular).49
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(a) (b)

Figure 2: (a) The spatial overlap of binding modes for various high affinity compounds for

PLpro. The ligands having binding free energies less than -9.0 kcal/mol were chosen. (b)

Comparative binding mode of the best binder with that of inhibitor N-(1,3-benzodioxol-

5-ylmethyl)-1-[(1R)-1-naphthalen-1-ylethyl]piperidine-4-carboxamide (GRM) of PLpro en-

zyme of SARS-CoV-1 based on 3MJ5 crystal structure. GRM is shown in green color.

The PLpro also has well defined binding site as shown in the Figure 2a. All the 10

compounds listed in Table 1 bind to this catalytic site and thus can be potentially used as

drug molecules against Covid-19 infection. In the Figure 2b, we show that the compound

Zoliflodacin binds at the same substrate binding site as the inhibitor GRM of PLpro of

SARS-CoV-1.

3.1.3 RNA dependent RNA polymerase inhibitors

In the case of RdRp binders belonging to the category of investigational drugs, the ph-

thalocyanine is a photodynamic drug against certain types of cancer, while Laniquidar and

golvatinib are active against breast cancer and carcinoma.16 The pharmacological action of

the other two selected compounds RU85053 and Golvatinib is not documented elaborately
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(a) (b)

Figure 3: (a) The spatial overlap of binding modes for various high affinity binders for RdRp

target. The ligands having binding free energies less than -9.0 kcal/mol were chosen. As can

be seen except the RU85053 and CD564 (shown in red color), the rest of the drugs (shown

in green color) target nucleotide binding domain. (b) The spatial overlap of binding modes

for various high affinity binders in the interfacial region of spike protein (receptor binding

domain) and ACE-2 mammalian receptor. The ligands having binding free energies less than

-9.7 kcal/mol were chosen

in the literature. The approved list of high affinity compounds for RdRp protein includes

Lumacaftor, Ergotamine, Natamycin, Dihydroergotamine and Imatinib. We already dis-

cussed the pharmacological properties of the compounds Lumacafor and Natamycin in the

previous section as they are also predicted to interact with PLpro (Table1). The compound,

Imatinib is an anticancer drug and is used for the treatment of chronic myelogenous leukemia

(CML), gastrointestinal stromal tumors and acts by inhibiting tyrosine kinase enzyme.16

Both Ergotamine and Dihydroergotamine are used for treating the migraine disorders. Fig-

ure 3a shows the binding modes for all 10 compounds related to RdRp protein (Table 1).

Except for the two compounds i.e. RU85053 and CD564 all other compounds bind to the

nucleotide binding site. The therapeutic role of these compounds is associated with their

interference with the nucleotide binding to this target.
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3.1.4 Compounds binding to spike protein

The subset of approved compounds which bind to interfacial region located between the viral

spike protein and ACE-2 mammalian receptor with high binding affinity are Dexamethasone

metasulfobenzoate (DMS), Nilotinib, Sonidegib, Enasidenib, Regorafenib, Lifitegrast and

Capmatinib. The binding affinities for this set of compounds are in the range -9.7 to -10.4

kcal/mol. In particular, last three compounds have the same binding affinity of -9.7 kcal/mol.

Among these compounds, the pharmacological property of DMS is not documented well in

the literature and it appears to be used in the treatment of anaesthetic complication, nausea,

vomiting.16 The compound Nilotinib is in practice to treat chronic myelogenous leukemia

that is resistant to Imatinib (which we reported as RdRp inhibitor in the above subsec-

tion). The compounds, Sonidegib and Enasidenib are again anticancer compounds used in

the treatment of basal cell carcinoma and acute myeloid leukemia respectively while Rego-

rafenib is active against metastatic colorectal cancer and advanced gastrointestinal stromal

tumours. The compound, Capmatinib is used in the treatment of Melanoma, Gliosarcoma,

solid Tumors, colorectal cancer. The remaining compound in the subset, Lifitegrast is active

against dry eye syndrome. The top most high affinity compounds in the subset of experi-

mental drugs include Lifirafenib, Resiniferatoxin, JTK-853, Tegobuvir and PCO-371 and the

binding affinities are in the range -10.5 to -10.7 kcal/mol. The top compound, Lifirafenib is

also an anticancer agent against advanced or metastatic malignant solid tumors. The com-

pound Resiniferatoxin is a pain reliever while JTK-853 is potent against Hepatitis C virus

infection. Interestingly, Tegobuvir is a non-nucleoside inhibitor against HCV RNA replica-

tion and potent investigational compound for the treatment of chronic HCV infection.50 The

compound PCO-371 was an investigational compound for treating hypoparathyroidism and

works as a parathyroid 1 receptor agonist.

As mentioned earlier, the viral spike protein recognizes the mammalian ACE-2 receptor

and mediates the binding to the host cell membrane. The drug-like compounds should

weaken the protein-protein interaction through binding to interfacial region between the

spike protein and ACE-2. Indeed, the compounds studied here bind to a site which is

located in the interfacial region between the two biomolecules (refer to Figure 3b). However,

it is difficult to say whether the binding of these compounds will increase or decrease the

interaction between the two biomolecules i.e. spike protein and ACE-2 receptor. If the

ligands bind to both biomolecules with stronger binding affinity then the protein-protein

interaction will be increased. However, if it binds to any one of the biomolecules with higher

binding affinity, then the protein-protein interaction can be weakened and only this situation

will have expected therapeutic effect.
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Figure 4: Distribution of binding energies of compounds in the Drugbank database towards

the four viral targets, (a) 3CLpro, (b) PLpro, (c) RdRp (d) spike protein

3.2 Binding affinities of the compounds from the Drugbank database

In order to check the total number of lead compounds which can be identified with the use of

AutoDock Vina from the Drugbank database, we calculated the binding energy distributions

for all molecules in this database (8773 compounds with 3D structure) in four different viral

targets (Figure 4). Most of the compounds are reported to have a significant to considerable

binding affinity in the range of -4 to -9 kcal/mol. A careful analysis of the plot shows that the

number of compounds having binding affinity < -9 kcal/mol vary depending upon the target.

The spike protein was found with the most number of compounds followed by the RdRp. In

addition, both proteases have comparable numbers of compounds with the binding affinity

lower than this value. This can be directly related to the binding site volume and molecular

volume of lead-compounds. Since the spike protein and RdRp have larger binding sites,

most of the drug molecules can bind to these targets without any restriction on their size. If

we are looking for compounds having the binding affinity in the subnanomolar range (which

corresponds to binding free energies < -12.35 kcal/mol), the Drugbank database does not

have any compounds to offer and other chemical spaces such as ZINC51 or GDB1352 can be

exploited to look for such compounds. Another option is to modify the chemical structure
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of the top compounds that were obtained from our screening in a way to maximize the

interaction with neighboring residues in the binding site. We have analysed the compounds

having binding affinity in the nanomolar range (i.e. 1-100 nM which corresponds to binding

free energies < -9.61 kcal/mol). In particular, for 3CLpro, there is just one compound (LY-

2090314 ) and for PLpro, there are two compounds (Zoliflodacin and JE-2147) with binding

affinity in this range. In the case of RdRp, there are 16 such compounds (refer to Table 1

for top 5 of them) and for spike protein 51 such compounds (refer to Table 1 for the top 5 of

them). Altogether, based on this observation, we can conclude that the Drugbank database

does not have many compounds with superior binding affinity for both proteases (3CLpro

and PLpro) however, for the other two targets (RdRp and S protein) reasonable number of

such compounds are present.

Table 2: The compounds from the Drugbank database and the corresponding binding free

energies towards the four vital targets in SARS-CoV-2. The binding free energies are given

in kcal/mol. The free energies are computed using MM-GBSA approach as an average over

500 configurations extracted from molecular dynamics trajectories.

3CLpro PLpro RdRp Spike

-43.6 (Baloxavir marboxil) -35.9 (Natamycin) -43.1 (RU85053) -46.4 (Sonidegib)

-43.2 (LY-2090314) -35.0 (Lumacaftor) -36.1 (Golvatinib) -44.5 (Regorafenib)

-31.6 (Entrectinib) -27.5 (CP-609754) -29.5 (Natamycin) -42.4 (Lifitegrast)

-30.2 (Tadalafil) -23.7 (Zoliflodacin) -27.2 (Lumacaftor) -40.4 (PCO-371)

-27.6 (Tivantinib) -22.6 (Quarfloxin) -18.6 (Dihydroergotamine) -36.2 (Resiniferatoxin)

The AutoDock Vina based scoring uses a single rigid protein conformation for ranking

the compounds. However, inclusion of the conformational flexibility of protein might help

to remove strains for certain ligands in the binding site and so a rescoring with the inclusion

of protein-ligand dynamics will result in an improved ranking of the ligands. Therefore, we

have further ranked the 10 compounds (which include both approved and investigational

compounds) in Table 1 using MM-GBSA based binding free energies. In this case, the

binding free energy calculations are carried out for the protein-ligand configurations (500

in total) picked up from the molecular dynamics simulations and allow full conformational

flexibility for both proteins and ligands. The binding free energies are computed as the sum

of van der Waals, electrostatic, polar and non-polar solvation energies where the latter two

terms are computed using an implicit solvent model.
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Table 3: Various contributions to the binding free energies of selected high affinity compounds

for various viral targets. The free energies were computed using MM-GBSA approach.

Site ∆Evdw ∆Eelec ∆GGB ∆GSA ∆Gbinding

3CLpro

Baloxavir marboxil -53.8 -7.0 23.3 -6.0 -43.6

LY-2090314 -49.5 -19.0 30.7 -5.4 -43.3

PLpro

Natamycin -43.2 -40.9 53.6 -5.4 -35.9

Lumacaftor -44.2 -9.2 24.0 -5.5 -35.0

RdRp

RU85053 -66.0 -38.2 70.0 -8.7 -43.1

Golvatinib -49.6 -33.4 53.3 -6.5 -36.1

spike

Sonidegib -61.5 -26.5 49.2 -7.6 -46.4

Regorafenib -54.9 -31.6 49.1 -7.1 -44.5

3.3 Rescoring the compounds using MM-GBSA based binding

free energy calculations

The top 5 compounds for each target obtained after rescoring all 10 compounds (Table 1)

using the MM-GBSA based calculations are shown in Table 2. We found that the ranking for

the compounds is different when compared to the AutoDock Vina based scoring which has

to be attributed to lack of protein conformational sampling in the latter case. For the 3CL-

pro target, the latter scoring approach produced LY-2090314 and 10-hydroxycamptothecin

as the top high affinity compounds. However, the MM-GBSA based scoring yielded Balox-

avir marboxil and LY-2090314 as the top high affinity compounds. Similarly, for PLpro,

AutoDock Vina predicted Zoliflodacin and JE-2147 as the top 2 inhibitors while Natamycin

and Lumacaftor were the top compounds predicted with MM-GBSA based scoring. In the

case of RdRp, RU85053 and Niltinib are the two top performing compounds and Sonidegib

and Regorafenib are the compounds identified for the spike protein. Another striking ob-

servation was regarding the larger variation in binding free energies computed from the

MM-GBSA approach. Binding free energies vary over a range of -27.6 to -43.6 kcal/mol in

the case 3CLpro associated inhibitors. The underestimation of binding free energies by MM-
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GBSA approach has also been shown in the literature.53 Nevertheless, it is considered to be a

better approach in ranking complexes when compared to AutoDock or AutoDock Vina.29,53

For ranking of complexes, relative difference in free energies is more significant compared to

the absolute binding free energies and this makes the MM-GBSA based approach promising.

Furthermore, we also checked various contributions to the total binding free energies

obtained using MM-GBSA approach for the top 2 compounds in each target (refer to Table

3). The following observations were made: (i) Major contributions to total binding free

energies are due to ∆Evdw term which suggests that the complexation is driven mostly by

the van der Waals type interactions. (ii) the total electrostatic contributions which is a sum

of electrostatic interaction between the target-ligand (∆Eelec) and polar solvation energies

(∆EGB) are acting against the complexation (Table 3). We learn that the compounds which

are engaged in larger van der Waals interactions with targets are the best inhibitors and so the

compounds with more number of hydrophobic groups are preferred. Since the electrostatic

interactions between the polar functional groups and charged residues in protein are nullified

by polar solvation energies, the compounds with hydrophilic groups are less favoured as

inhibitors.

Table 4: Multi-targeting drugs for SARS-CoV-2. The compounds are identified based on

the binding free energies computed using AutoDock Vina for the three viral targets namely

3CLpro, PLpro and RdRp. The binding energies are in kcal/mol.

Drug 3CLpro PLpro RdRp

DB04016 -8.8 -9.4 -9.5

Phthalocyanine -8.8 -9.6 -10.6

DB08386 -8.7 -8.8 -9.1

Tadalafil -8.6 -9.2 -9.1

Lonafarnib -8.5 -8.5 -9.1

Nilotinib -8.4 -8.7 -9.1

Dihydroergotamine -8.3 -8.5 -9.3

R-428 -8.3 -8.7 -9.4

3.4 Multi-targeting drugs from the Drugbank database for Covid-

19

It is desirable to target multiple targets associated with an infection or disease with relatively

low affinity compounds than targeting a single specific target with high affinity binding.
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It it known that certain targets have tendency to mutate much more easily to gain drug

resistance.54 In this occasion it is generally recommended to subscribe a combination of

drugs or drug cocktails where each individual compound has specificity and binding affinity

towards a target. Another option is to design a molecule which can inhibit multiple targets

simultaneously. Such compounds are designed better using a fragment based approach where

each fragment can have specificity for a target and by designing a compound with multiple

fragments, this can be achieved. Here, we have explored the Drugbank database with the

intention whether there are compounds which can bind to multiple targets of Covid-19

associated virus with significant binding affinity. We have identified a few such compounds

based on their binding energies computed using AutoDock Vina for the three targets and

listed them in Table 4. In this case, we have not included spike protein as a target as

the binding affinity to the interfacial site may not be directly correlated to pharmacological

activity. The list surprisingly does not include any antiviral compounds but rather many

of them are anticancer compounds (phthalocyanine, Tadalafil, Lonafarnib, Nilotinib and

R-428).

3.5 Appraisal of the compounds under consideration for clinical

trials

As of today many compounds from the Drugbank database and other chemical databases

have been considered as potential against Covid-19. Recently, it was reported that there

are more than 300 drug trials in progress.55 Here, we checked whether the computational

screening approach employed in this study could be used to validate the suitability of

those compounds considered for clinical trials. Some of the compounds such as Remdesivir,

chloroquine, Lopinavir, Oseltamivir, Ritonavir, Baloxavir marboxil, Favipiravir, Baricitinib,

Darunavir Umifenovir, etc., are under clinical trial for Covid-19 (Table S1). The list only

includes organics based compounds in clinical trials. Most of these are antiviral compounds

and shown to be active against HIV, influenza or Ebola, SARS-CoV-1 and MERS. Being

listed in the Drugbank database, these compounds were already part of our screening using

AutoDock Vina but did not show up in the list of high affinity compounds (Table 1). One

reason is that the Drugbank database has more potent compounds than those considered

for drug trials. Another reason for not showing up as top affinity compounds could be due

to limited accuracy of the employed scoring method. It is worth mentioning that rescoring

the top 10 compounds using MM-GBSA approach, resulted in the change of ranking (Table

2) as compared to their original ranking obtained from the AutoDock Vina (Table 1). This

also indicates that accuracy of the scoring function has a clear impact on the outcome.
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The binding energy computed using AutoDock Vina for Remdesivir with RdRp is -

7.2 kcal/mol which is higher (by about 3.4 kcal/mol) than the binding affinity of the best

compound, phthalocyanin obtained from the screening. Further it is having higher bind-

ing energy (by about 2.7 kcal/mol) than the second best compound RU85053. Probably,

AutoDock Vina based scoring has pushed Remdesivir down in the list of high affinity com-

pounds and this can be a case of “false negative” outcome with this approach. In order to

check whether another scoring method has any impact on the ranking of the compounds,

the binding energies of Remdesivir and other selected set of trial compounds in three se-

lected viral targets33,55 were recalculated using a more accurate MM-GBSA approach (Table

5). The results showed that the binding free energy of Remdesivir (-36.6 kcal/mol) with

RdRp target was second least to that of the top compound, RU85053 (Table 2). In addition,

Remdesivir also inhibits 3CLpro and appears to be the best compound in the Drugbank

database against this specific target which is quite an interesting observation. The com-

pound has the free energy of binding -44.4 kcal/mol (Table 5) against this target while this

value corresponds to -43.6 kcal/mol for the best compound (Baloxavir marboxil) obtained

from combined AutoDock Vina and MM-GBSA based screening (Table 2). The ability of

Remdesivir to inhibit two targets namely 3CLpro and RdRp simultaneously may be a reason

why this compound is the most potential compound from the Drugbank database against

Covid-19.33,55 This observation gives high-level confidence on MM-GBSA based scoring and

also supports the inclusion of this compound in the clinical trial for Covid-19.33,55

Table 5: The binding free energies computed using MM-GBSA for the trial compounds

against three viral targets namely 3CLpro, PLpro and RdRp. The binding energies are in

kcal/mol. The binding modes for all these compounds were obtained from AutoDock Vina.

Drug 3CLpro PLpro RdRp

Remdesivir (DB14761) -44.4 -27.3 -36.5

Baloxavir marboxil (DB13997) -43.6 -16.0 -22.4

Hydroxy chloroquine (DB01611) -12.1 -14.7 -25.8

Oseltamivir (DB00198) -15.8 0.0 -19.8

Favipiravir (DB12466) -5.4 -5.4 -4.1

Baricitinib (DB11817) -17.6 -36.6 -13.1

Darunavir (DB01264) -27.3 -25.7 -22.5

Umifenovir (DB13609) -26.9 -16.8 -35.9

Further analysis of the binding free energy results obtained using the rescoring approach
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for the other compounds in Table 5 can provide possible explanation for their potency against

SARS-CoV-2 targets. The results indicate that the hydroxychloroquine is not the best

inhibitor for any of the proteases of the virus but showed moderate binding affinity for RdRp

(Table 5). The therapeutic effect of hydroxychloroquine against many RNA viruses including

HIV, influenza, MERS, SARS-CoV-1 is due to interference with the pH dependent endosome-

mediated viral entry and thus it is reported to be targeting the human cell rather than the

viral targets.56,57 In agreement to this our study reports negligible binding preference to

any of the viral targets. Further our study showed that the compound, Oseltamivir and

Favipiravir are not potential compounds for Covid-19 as they only exhibited moderate or

negligible binding affinities towards the viral targets when compared to the top compounds

obtained from combined AutoDock Vina and MM-GBSA based scoring. The compounds

such as Baricitinib and Umifenovir showed superior binding affinity towards PLpro and

RdRp respectively, among the trial compounds. Darunavir is also found to be a potent

compound as it exhibited moderate binding affinities towards all three targets.

3.6 Proposing a drug-cocktail for Covid-19

Drug cocktail is a combination of drugs that have best potency against each of the vital

drug targets of the virus. Here, we have considered the three vital targets for SARS-CoV-2.

The spike protein is not included here as we cannot relate the binding affinity of the drugs

to binding site in the interfacial region to the potency. In figure 3b, this site is shown to be

occupied by the ligands in green color. Further, the spike protein receptor binding domain is

shown to have multiple beta-sheet like secondary structures and the ACE-2 receptor is shown

with many helix-like secondary structures. If the drugs have stronger binding affinity for both

targets then the protein-protein interaction is increased. But if the binding is specific to any

one of the targets, then the protein-protein interaction will be reduced. Overall, the binding

affinity of drugs in the interfacial region cannot be directly related to their pharmacological

activity. We propose that a combination of Baloxavir marboxil, Natamycin and RU85053

can serve as a suitable drug cocktail for Covid-19 as they can respectively inhibit 3CLpro,

PLpro and RdRp. It is worth noting that Baloxavir marboxil is already under consideration

in combination with Favipiravir for drug trial by a company Shionogi, Toyama Chemical.33

Even though our study supports the activity of the former compound, the latter one was

not identified to be potent against any of the viral targets (Table 5) as it has much higher

free energies of binding (-4.1 to -5.4 kcal/mol).
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4 Conclusions

We have searched for potential active compounds in the Drugbank database for target-

ing different SARS-CoV-2 proteins such as 3CLpro, PLpro, RdRp and spike protein. For

each of these targets, we identified compounds with high binding affinity using a double

scoring approach. Some of these compounds are already under trial for the treatment of

Covid-19 infection. This clearly demonstrates not only the strength of our strategy based

on the combined scoring (AutoDock Vina + MM-GBSA based) but also gives confidence

for the use of computational approach-based screening as a starting step for drug repur-

posing/discovery. Moreover, from the list of the identified compounds we also proposed

drug(s) which can be either used individually or in combination, against the virus. We also

report the multi-targeting capacity of a few drugs like phthalocyanine, Tadalafil, Lonafarnib,

Nilotinib, Dihydroergotamine and R-428 which have the potential to simultaneously inhibit

three viral targets such as 3CLpro, PLpro and RdRp. Further, the study also included the

binding energy estimation for various compounds which are currently under drug trials. It

is shown that Remdesivir binds to RdRp and 3CLpro with high binding affinity indicating

that it can be categorised as a multi-targeting drug. Baricitinib and Umifenovir were found

to be compounds with superior target-specific binding while Darunavir is found again to

be a multi-targeting drug. It is shown that hydroxy chloroquine and Oseltamivir are not

very active against any of the viral targets and in particular, the former compound has only

moderate binding affinity towards RdRp.
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Figures

Figure 1

(a) The spatial overlap of binding modes for various high a�nity compounds for 3CLpro. The ligands
having binding free energies less than -9.0 kcal/mol were chosen. (b) Comparative binding mode of the
best binder with that of N3 inhibitor (shown in red color).



Figure 2

(a) The spatial overlap of binding modes for various high a�nity compounds for PLpro. The ligands
having binding free energies less than -9.0 kcal/mol were chosen. (b) Comparative binding mode of the
best binder with that of inhibitor N-(1,3-benzodioxol- 5-ylmethyl)-1-[(1R)-1-naphthalen-1-ylethyl]piperidine-
4-carboxamide (GRM) of PLpro enzyme of SARS-CoV-1 based on 3MJ5 crystal structure. GRM is shown
in green color.



Figure 3

(a) The spatial overlap of binding modes for various high a�nity binders for RdRp target. The ligands
having binding free energies less than -9.0 kcal/mol were chosen. As can be seen except the RU85053
and CD564 (shown in red color), the rest of the drugs (shown in green color) target nucleotide binding
domain. (b) The spatial overlap of binding modes for various high a�nity binders in the interfacial region
of spike protein (receptor binding domain) and ACE-2 mammalian receptor. The ligands having binding
free energies less than -9.7 kcal/mol were chosen



Figure 4

Distribution of binding energies of compounds in the Drugbank database towards the four viral targets,
(a) 3CLpro, (b) PLpro, (c) RdRp (d) spike protein
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