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Abstract
COVID-19 pandemic has now expanded over 213 nations across the world. To date, there is no speci�c medication available for SARS CoV-2 infection. The
main protease (Mpro) of SARS CoV-2 plays a crucial role in viral replication and transcription and thereby considered as an attractive drug target for the
inhibition of COVID-19,. Natural compounds are widely recognised as valuabe source of antiviral drugs due to their structural diversity and safety. In the
current study, we have screened twenty natural compounds having antiviral properties to discover the potential inhibitor molecules against Mpro of COVID-19.
Systematic molecular docking analysis was conducted using AuroDock 4.2 to determine the binding a�nities and interactions between natural compounds
and the Mpro. Out of twenty molecules, four natural metabolites namely, amento�avone, guggulsterone, puerarin, and piperine were found to have strong
interaction with Mpro of COVID-19 based on the docking analysis. These selected natural compounds were further validated using combination of molecular
dynamic simulations and molecular mechanic/generalized/Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations. During MD
simulations, all four natural compounds bound to Mpro on 50ns and MM/G/P/BSA free energy calculations showed that all four shortlisted ligands have
stable and favourable energies causing strong binding with binding site of Mpro protein. These four natural compounds have passed the Absorption,
Distribution, Metabolism, and Excretion (ADME) property as well as Lipinski’s rule of �ve. Our promising �ndings based on in-silico studies warrant further
clinical trials in order to use these natural compounds as potential inhibitors of Mpro protein of COVID.

1. Introduction
Coronavirus disease (COVID–19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV–2) which primarily affects
the lungs and shows certain types of pneumonia-like symptoms (Huang et al., 2020; Kumar et al., 2020). SARS-CoV–2 is a novel strain of coronavirus, �rst
time emerged in December 2019, during an outbreak in Wuhan, China, and subsequently expanded to all over the world in a very short period of time (World
Health Organization, 2020; Hendaus, 2020). The outbreak was declared a Public Health Emergency of International Concern by WHO on 30 January 2020
(WHO, 2020). As on June 02, 2020, this contagious disease has led to over 6, 140, 934 con�rmed cases and 373, 548 fatalities (https://covid19.who.int/). To
date, there is no speci�c treatment for this ongoing COVID–19 pandemic. Some preliminary study results investigated potential drug combination of
Lopinavir and Ritonavir to treat COVID–19 infected patients, which were earlier used in human immunode�ciency virus (HIV) and SARS CoV or Middle East
respiratory syndrome (MERS) coronavirus patients (Lu, 2020; Chu et al., 2004). The drugs which can speci�cally target the virus replication cycle and
subsequent infection are urgently required to develop effective antiviral therapies as early as possible. Natural compounds due to the presence of enormous
structural and chemical diversity, availability of more chiral centers, and relative biosafety are considered as an excellent source of drugs in several diseases
including viral infections. This is further strengthened by the fact that around 45% of today’s bestselling drugs have either originated from natural products
or their derivatives (Lahlou, 2013). Natural compounds possesses antiviral property could become a valuable resource in this regard. Liu et al. (2020)
crystallized the COVID–19 main protease (Mpro), which has been structured and repositioned in the Protein Data Bank (PDB) and is publically accessible.
SARS-CoV–2 main protease (Mpro) is reported to play an inevitable role in virus replication and transcription, suggesting it to be a promising target for
inhibition of the SARS-CoV–2 cycle (Boopathi et al., 2020; Lahlou, 2013; Xu et al., 2002). Keeping this in mind, in this study we have selected several natural
compounds based on extensive literature (Zakaryan et al., 2017; Thayil et al., 2016; Jo et al., 2020).

In the present study, we screened and explored the potential of selected natural compounds to inhibit the Mpro of COVID–19 using molecular docking,
followed by MD simulations, MM/G/P/BSA free energy calculations, ADME, drug-likeness, target speci�c binding, and toxicity analysis validation.

2. Material And Methods
A �ow chart of pipeline used in present study is summarized in Figure 1.

2.1 Literature survey and ligands selection

An extensive literature survey was conducted to select the natural compounds having antiviral properties from different medicinal plants using PubMed and
Google scholar platforms. Based on the literature survey, total twenty natural compounds were selected, and their chemical structures were extracted from
PubChem (Kim et al., 2016) repository in SDF format. List of all selected natural compounds along with their corresponding chemical Ids, 2D and 3D
structures is presented in Table 1. In order to prepare the ligands to perform molecular docking, hydrogen atoms were added followed by PDB structure
generation by OPENBABEL program (O’Boyle et al., 2008). Further, all the molecules were allowed for the energy minimization and optimization using
universal force �eld at 200 descent steepest algorithm of OPENBABEL available in PyRx (https://pyrx.sourceforge.io/) and converted in pdbqt format.

2.2 Preparation of protease

The 3D coordinates of main Mpro of SARS-CoV–2 was obtained from the RCSB-PDB repository with PDB ID 6LU7 (Jin et al., 2020). In order to prepare the
macromolecule for docking, water and other nonspeci�c molecules were removed by using UCSF CHIMERA (Pettersen et al., 2004). For protein protonation
maintaining cellular pH, polar hydrogen atoms were added to the 3D structure model of Mpro. The structure optimization and energy minimization were
performed by using SPDB viewer (Guex & Peitsch, 1997). While, clean geometry module embedded in Discovery Studio package was utilized for the side
chain angles correction.

2.3 Molecular docking

https://covid19.who.int/
http://%28https//pyrx.sourceforge.io/
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To identify new potential inhibitors against the Mpro of SARS-CoV–2, the site-speci�c docking-screening of all selected natural compounds were carried out
by AutoDock 4.2 (Forli et al., 2012). The box dimensions were kept as 70 Å × 70 Å × 70 Å with total of 50 genetic algorithm run. Other docking parameters
were set as default. During performance of molecular docking, the amino acid residues including Thr25, Thr26, Gly143, Ser144, His163, His164, and Glu166
were utilized as the binding pocket sites. Other docking parameters of AutoDock 4.2 were set as default. The protein-ligand interactions were further rendered
with the Maestro and Discovery studio programs.

2.4 ADME compound screening

An in-silico tool for analysis of absorption, distribution, metabolism, and excretion (ADME) was used to screen the above-mentioned compounds which could
be bioactive via oral administration. Drug-like properties were calculated using Lipinski’s rule of �ve using SWISSADME prediction
(http://www.swissadme.ch/) (Lipinski et al., 2012)(Giménez et al., 2010). .

2.5 Target prediction

Molecular Target studies are important to �nd the macromolecular targets of bioactive small molecules. This is useful to understand the molecular
mechanisms underlying a given phenotype or bioactivity, to rationalize possible side-effects, to predict off-targets (Enmozhi et al., 2020). In this direction,
SwissTarget Prediction tool (https://www.swisstargetprediction.ch) was used (Daina et al., 2019). Canonical smile for Amento�avone and Guggulsterone
was entered and was analyzed.

2.6 Molecular dynamics (MD) simulations

The four representative docking complexes of ligands with Mpro including amento�avone, guggulsterone, puerarin, and piperine were used for further
re�nement using MD simulations analysis. MD simulation studies were carried out to �nd out the stability and �exibility of the natural compounds-Mpro

complexes on 50ns. The method used for the MD simulations of natural compounds-Mpro complexes remains same as earlier described in recent studies
(Gajula et al., 2016; Kumar et al., 2018; Jee et al., 2018; Kumar et al., 2020). All simulations of representative natural compounds-Mpro complexes were
conducted with the fruitful utilization of GROMOS96 43a1 force �eld available in GROMACS 5.1.4 suite (Van Der Spoel et al., 2005). Topology �les for ligand
molecules were created by using PRODRG server (Schüttelkopf & Van Aalten, 2004). The prepared protein complexes were solvated in a cubic box of edge
length 10 nm along with SPC water molecules. In order to maintain the system neutrality, adequate numbers of ions were added. To remove the clashes
between atoms, system energy minimization calculations were applied with the convergence criterion of 1000 kJ/mol/nm. Long-range interaction
electrostatics (Abraham & Gready, 2011) was handled by using PME. For both van der Waals and Coulombic interactions, a cut-off radius of 9 Å was utilized.
Equilibration was completed in two different phases. The solvent and ion molecules were kept unrestrained in �rst stage, while in the second stage the
restraint weight from the protein and protein-ligand complexes was gradually declined, in NPT ensemble. LINCS constraints were applied to all bonds
involving hydrogen atoms (Hess et al., 1997). The temperature and pressure of the system were kept at 300 K and 1 atm respectively by using Berendsen’s
temperature and Parrinello-Rahman pressure coupling respectively (Berendsen et al., 1995). The production simulation was initiated from the velocity and
coordinates obtained after the last step of the equilibration step. All the systems were simulated for 200 ns and snapshots were taken at every 2 ps interval.

2.7 MM/PBSA free energy calculations

The calculations of binding energy of the Mpro-ligand complexes were calculated by using MM/PBSA (Molecular Mechanics Poisson Boltzmann Surface
Area) method. While calculations of MM-PBSA the polar part of the solvation energy was calculated by using the linear relation to the solvent accessible
surface area. The g_mmpbsa module available in GROMACS was applied for the determination of different components of the binding free energy of
complexes (Kumari and Kumar, 2014). Only the last 10 ns of data were utilized for the MM-PBSA analysis to considering the convergence issue associated
with the calculations. In present study, entropy calculations were not calculated as they may change the numerical values of the binding free energy reported
for the molecules. In the MM-PBSA calculation, the binding free energy between Mpro and a ligand was calculated using following equations:

𝛥𝐺𝑀𝑀𝑃𝐵𝑆𝐴 = �𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥– 𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑�𝑐𝑜𝑚𝑝𝑙𝑒𝑥

(1)

𝐺x = 𝐸MM − 𝑇�𝑆MM�+ 𝛥𝐺𝑠𝑜𝑙𝑣

(2)

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑐𝑜𝑢𝑙+ 𝐸𝐿𝐽

(3)

𝛥𝐺𝑠𝑜𝑙𝑣 = 𝐺𝑝𝑜𝑙𝑎𝑟+ 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

(4)

2.8 Toxicity analysis

http://%28http//www.swissadme.ch/
http://%28https//www.swisstargetprediction.ch
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Toxicity analysis of selected natural compounds was done by the ProTox-II web server (Banerjee et al., 2018). ProTox-II is a kind of virtual lab which
integrates several parameters like molecular similarity, fragment propensities and most frequent features. It predicts various toxicity endpoints and
incorporates a total of 33 models for the prediction of various toxicity aspects of small molecules.

2.9 Similar FDA approved drug compound search with SWISS similarity

The compounds which were giving the best binding energy among the selected natural compounds were checked for similarity, if any, with FDA approved
drugs using SWISS similarity tool (http://www.swisssimilarity.ch) (Zoete et al., 2016).

2.10 Computational facility details

The MD simulations and corresponding energy calculations were carried out on HP Gen7 server with 48 Core AMD processors and 32GB of RAM.

3. Results
3.1 Determination of Active Sites: Table 1 shows the structure and amino acids found in the active site pockets of 6LU7. 6LU7 is the main protease

(Mpro) found in COVID–19, which has been structured and repositioned in PDB and can be accessed by the public, as of early February 2020.

3.2 ADME (Absorption, distribution, metabolism, and excretion): ADME properties were found by obtaining the canonical smiles from PubChem. These
smiles were used to identify ADME properties using SWISS ADME. Then compounds were analyzed on various parameters like lipophilicity, molecular
weight, hydrogen-bond donors, hydrogen-bond acceptors, Clog P-value, Ghosh violations, Lipinski violations, etc. Ligands/natural compounds have been
selected based on adherence to soft or classical Lipinski’s rule of �ve. The selected ligands that did not incur more than 2 violations of Lipinski’s rule were
further used in molecular docking experiments with the target protein. The drug scanning results (Table 2) show that most of the tested compounds in this
study was accepted by Lipinski’s rule of �ve. These compounds were selected for docking to �nd their binding a�nity with COVID19 main protease Mpro.
List of compounds with suitable ADME properties given below:

http://%28http//www.swisssimilarity.ch
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 S.N. Compound
Name

Mol.
Weight
(g/mol)

Concensus
Log Po/w

Num. H-
bond

acceptors

Num.
H-

bond
donors

Molar
Refractivity

Lipinski Veber Bioavailability
score

Synthetic
accessibility

(SA)

TPSA
(Å�)

No of
rotatable

bonds 

Solubility
(mg/ml)

1
Ritonavir 720.94 5.04 7 4 197.82 No No 0.17 6.45 202.26 22 6.87e-08

2 Lopinavir 628.8 4.37 5 4 187.92 Yes No 0.55 5.67 120.00 17 5.57e-08

3 Herbacetin 302.24 1.33 7 5 78.03 Yes Yes 0.55 3.2 131.36 1 1.73e-01

4 Rhoifolin 578.52 -0.66 14 8 137.33 No No 0.17 6.33 228.97 6 1.92e+01

5 Guggulsterone 312.45  4.03 2 0 93.54 Yes Yes 0.55 4.79 34.14 0 8.14e-03

6 Cyanidin-3-o-
galactoside

449.38 -1.16 11 8 108.29 No No 0.17 5.27 193.44 4 5.23e+01

7 Xanthohumol 354.40  3.76 5 3 102.53 Yes Yes 0.55 3.16 86.99 6 9.26e-03

8 Phloretin 274.27  1.93 5 4 74.02 Yes Yes 0.55 1.88 97.99 4 1.16e-01

9 Crocetin 328.40  4.21 4 2 98.48 Yes Yes 0.56 3.99 74.60 8 5.44e+01

10 Pectolinarin 622.57  -0.43 15 7 148.29 No No 0.17 6.63 227.20 8 3.48e+00

11 Apigenin 270.24  2.11 5 3 73.99 Yes Yes 0.55 2.96 90.90 1 1.07e-02

12 Luteolin 286.24  1.73 6 4 76.01 Yes Yes 0.55 3.02 111.13 1 4.29e-02

13 Amentoflavone 538.46  3.62 10 6 146.97 No No 0.17 4.27 181.80 3 1.07e-06

14 Daidzein 254.24 2.24 4 2 71.97 Yes Yes 0.55 2.79 70.67 1 2.64e-03

15 Puerarin 416.38 0.27 9 6 104.59 Yes No 4.98 0.55 160.82 3 4.49e-01

16 Epigallocatechin 306.27 0.42 7 6 76.36 Yes Yes 0.55 3.53 130.61 1 8.42e+00

17 Resveratrol 228.24 2.48 3 3 67.88 Yes Yes 0.55 2.02 60.69 2 1.18e-01

18 Maslinic acid 472.70 5.24 4 3 137.82 Yes Yes 0.56 6.22 77.76 1 2.37e-03

19 Piperine 285.34 3.04 3 0 85.47 Yes Yes 0.55 2.92 38.77 4 2.87e-01

20 Ganomycin B 344.44 4.44 4 3 103.1 Yes Yes 0.56 3.13 77.76 9 3.13e-02

Table 1. List of compounds with suitable ADME properties

3.3 Target prediction

00The target prediction analysis was displayed for our two best compounds, Amento�avone and Guggulsterone on the web page with the following
observations the top 15 of the results were given as a pie-chart (Figure 2). The pie chart for Amento�avone predicts 20% of Family AG protein-coupled
receptor, 13.3% Kinase, 13.3% of Enzymes, 13.3% of unclassi�ed protein, 6.7% of Phosphatase, 6.7% of protease, 6.7% of Oxidoreductase, 6.7% of primary
active transporter, 6.7% of Secreted protein, 6.7% of Ligand-gated ion channel. The pie chart for Guggulsterone predicts 40% of Nuclear Receptors, 13.3% of
CytochromE P450, 13.3% of Secreted protein, 13.3% of Oxidoreductase, 6.7% of Membrane receptors, 6.7% of Fatty acid-binding protein family, 6.7% of
Enzymes. The output table consisting of Target, Common Name, Uniprot ID, ChEMBL-ID, Target Class, Probability, and Known actives in 2D/3D are given in
the Supplementary material. The possible sites of the target which the compound may bind to are mostly the targets which are predicted by the software
and the probability score for Amento�avone and Guggulsterone are obtained from 1.0 to 0.0868 & 1.0 to 0.101672 respectively. This makes an inference
that the small compound may have high target attraction towards the speci�c binding site it is directed to.

3.4 Molecular docking
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Molecular docking is an extensively used in-silico way to predict protein-ligand interaction. To perform the docking analysis, the structures and amino acids
found in the active site pockets of 6LU7. 6LU7 is the main protease (Mpro) found in COVID–19, which has been structured and repositioned in PDB databank.
Thereafter, Ligand-protein docking was performed, and the interactions were determined based on the binding a�nity of our compounds. Each individual
analysis gave positive results, suggesting that the selected natural compounds may directly inhibit COVID–19 main protease Mpro. The 14 selected natural
compounds were docked with COVID–19 main protease Mpro along with the standard ritonavir and lopinavir to compare the results. Further, like previous
other �ndings, our results also indicated a good binding a�nity of ritonavir and lopinavir to the COVID–19 main protease Mpro.The results obtained are as
follows:

Due to technical limitations, Table 2 cannot be displayed in the text. Please �nd Table 2 in the supplemental �le section.

Table 2. Shows the molecular docking analysis results for selected natural compounds against COVID–19 main protease Mpro (PDB–6LU7).

Figure 3 and Figure 4 can be found in the �gures section.

Due to technical limitations, Table 3 cannot be displayed in the text. Please �nd Table 3 in the supplemental �le section.

Table 3. Docking analysis visualization of COVID–19 main protease Mpro (PDB–6LU7) binding with Lopinavir*, Ritonavir*, Amento�avone, Guggulsterone,
Puerarin, Piperine, Maslinic acid, Apigenin, Epigallocatechin, Daidzein, Xanthohumol, Resveratrol, Luteolin, Cyanidin–3-o-galactoside, Pectolinarin,
Herbacetin, Rhoifolin, Ganomycin B, Phloretin, and Crocetin. The 3D structures of protein-ligand interactions were visualized by discovery studio programs.
The binding residues and their chains were identi�ed from the protein-ligand complex as shown in the above images.

3.5 Molecular dynamics (MD) simulations

To further investigate the molecular docking results, the top four natural compound complexes namely, amento�avone, guggulsterone, puerarin, and piperine
were subjected to 50ns MD simulations. The conformational stability and �exibility of the complexes have been analyzed by using various parameters such
as root mean square deviation (RMSD), root mean square �uctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg), and binding
a�nity of phytomolecule complexes by using mmpbsa and hydrogen bond formation ability. The RMSD is a commonly used similarity tool to measure the
conformational perturbation during the simulation of macromolecule structures. RMSD of the Cα Atoms related to the stability of the complexes. The time
dependent RMSD from the initial stage of the simulation to 50 ns simulation. The RMSD of the backbone of these 4 complexes lies between 0.231–0.50 nm,
which stabilizes at the 35 ns whereas the RMSD of ligands ranged from 0.35–0.96 nm (Figure 5a). RMSD of the protein backbone of all system was small
and comparable, which may conclude that the binding of ligands does not lead to the con�rmation perturbation during the simulation (Figure 5b). During
MD simulations, RMSF de�ne the residual �exibility from the average position. The RMSF of the protein ranged from 0.2–0.4 nm of all systems (Figure 5c).
Some amino acid shows the high-intensity pick, which may represent a loop region. The presence of low-intensity pick revealed that binding of the
phytomolecules does not affect the stability of the structural region of the enzyme.

In MD simulations, Rg determines the compactness of protein, induced by the movement of a ligand. The lower the �exibility of the Rg during the simulation
associated with the structural stability of the protein. The Rg values of all phytochemical’s complexes were lies 2.20–2.05 nm (Figure 5d). The Rg values of
all four phytochemicals complexes support their consensus architecture as well as size. The SASA associated with the exposures of the hydrophobic residue
during the simulation. SASA plays a principal role in the van der interaction. The SASA values of all systems were lies between 125–150 nm2. SASA
con�rmations showed that the binding of ligand molecules does not affect the overall folding of the protein (Figure 6a).

In a complex protein and ligand, hydrogen bonding plays a critical role to determine the strength of interaction. During the simulation time, several hydrogen
bonds formed between the donor and the acceptor group (Figure 6c). Two hydrogen bonds consistently formed during the time of simulation (Figure 6b).
Over all observations indicated that all four complexes are stable during simulation.

3.6 Binding free energy calculation: In recent reports, it has been demonstrated that 100–200 snapshots are enough to calculate the binding free
energies (Khan et al., 2020)(Kumar et al., 2020)(Sarma et al., 2020). The free binding energy results showed that as compare to other molecules
Amento�avens has maximum binding energy –240.434±17.602–180.787 kJ/mol whereas Guggulsterone has lower binding energy –121.708±12.423
kJ/mol (Table 5). In each molecule, the polar salvation and SASA energy showed moderate effects on binding energy component.

Name of
molecules

Van der Waal energy
(K.J./mol)

Electrostatic energy
(K.J./mol)

Polar solvation energy
(K.J./mol)

SASA energy
(K.J./mol)

Binding energy
(kJ/mol)

Amentoflavone -350.08217.177 -104.69619.160 239.90621.251 -25.5621.010 -240.43417.602-
180.787

Guggulsterone -140.06815.668 -7.4089.330 37.62111.572 -11.8531.070 -121.70812.423
Piperine -173.54511.759 -9.3734.129 50.5737.610 -13.9431.293 -146.287 11.205
Puerarin -180.78720.912 -82.40516.508 148.20017.298 -16.6391.417 -131.63120.483

Table 4. Binding free energy calculation of four stable complexes during simulation

3.7 Toxicity analysis

In-silico toxicities of selected natural compounds were predicted by using ProTox-II. As shown in Table 4, ProTox-II toxicity prediction was done to check the
safety of the compounds based on two major toxicity end points, hepatotoxicity & cytotoxicity. According to the toxicity analysis, none of the selected
natural compounds showed potential hepatotoxicity or cytotoxicity except Pectolinarin which showed potential cytotoxicity.
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Due to technical limitations, Table 5 cannot be displayed in the text. Please �nd Table 5 in the supplemental �le section.

Table 5: Toxicity predictions for selected natural compounds

3.8 Similarity checks with FDA approved drugs using SWISS similarity

We further checked the similarity of our two top hit natural compounds Amento�avone and Guggulsterone if any, with the FDA approved drugs using SWISS
similarity check. Swiss Similarity web tool is used for rapid ligand-based virtual screening. For Amento�avone, we did not �nd any reported similar FDA
approved drug in Swiss Similarity database. Whereas for Guggulsterone, we found 117 FDA proved drugs. The output table consisting of Drug ID, Drug
name, Similarity score and molecule structure are given in the Supplementary material. The FDA approved drug structure obtained with the similar structure
of Guggulsterone which are predicted by the software and the probability score for obtained from 0.995 to 0.009. This makes an inference that that these
compounds could be very important and unique with pharmaceutical perspectives and need to be explored at in vitro and subsequent pre-clinical and clinical
trials.

Due to technical limitations, Table 6 cannot be displayed in the text. Please �nd Table 6 in the supplemental �le section.

Table 6: Swiss similarity prediction of Amento�avone and Guggulsterone compounds

4. Conclusion
The ongoing Covid–19 pandemic caused by SARS-CoV–2 has shattered the whole world and created a situation of public health emergency (WHO, 2020).
Keeping in the mind the immediate urgency, we are in dire need of some effective drug against the novel coronavirus Covid–19. Since the virus is new to the
Human population therefore the information regarding the ins and outs of this virus is very limited. Considering the scenario, we can get the possible lead
from the old SARS virus (SARS-CoV–1) emerged in 2003. Fortunately, in a recent study Liu et al. (2020) has revealed the crystal structure of SARS-CoV–
2/COVID–19 main protease (Mpro/3CL protease PDB-ID–6LU7 (Jin et al., 2020). This protease is considered an attractive target as it is essential for virus
functionality, replication, and entry competence. The main protease Mpro has been investigated as a potential target to inhibit previous coronavirus
infections also like SARS and MERS (Jo et al., 2020). This study aimed to screen the natural compounds based on their pharmacokinetic properties, drug
likeness and ability to speci�cally bind to the active sites of SARS-CoV–2 main protease so that these leads can be proposed as potential inhibitor to check
the virus replication cycle. Lopinavir and Ritonavir are well known protease inhibitor of HIV (Israr et al., 2011). Both drugs were also recommended as
repurposed drug in the treatment of SARS and Middle East respiratory syndrome (MERS) (Chu et al., 2004). Therefore, in this study we have taken these
drugs as standard reference drugs to compare the e�cacy of the binding of our selected compounds. In our in-silico prediction experiment, none of the
selected compound showed hepatotoxicity and cytotoxicity except Pectolinarin which showed potential cytotoxicity. The compounds which were found to
potentially inhibit the viral protease based on the binding energy were Amento�avone, Guggulsterone, Puerarin, Piperine, Maslinic acid, Apigenin,
Epigallocatechin, Daidzein, Xanthohumol, Resveratrol, Luteolin, Cyanidin–3-o-galactoside, Pectolinarin, Herbacetin, Rhoifolin, Ganomycin B, Phloretin, and
Crocetin. Among these Amento�avone and Guggulsterone were the top two leads showing lowest binding energy and satisfying our studied parameters.
Therefore, we propose that these natural compounds may further be validated as potential inhibitors of COVID–19 main protease Mpro. Our promising
�ndings based on preliminary an in-silico analysis could become a basis for further studies at in-vitro and in-vivo levels in order to use these compounds as
potential inhibitors of SARS-CoV–2 protease.
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Figure 1

(a) Solvent accessible surface area (SASA); (b) hydrogen bond numbers; (c) hydrogen bond distribution for all four complexes during MD simulations on
50ns.
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Figure 2

(a) Root mean square deviation (RMSD) backbone; (b) RMSD ligand; (c) root mean square �uctuation (RMSF); (d) radius of gyration for all four complexes
over the 50ns simulations. -8.05 kcal/mol docking energy. Interactions were visualized using Interactions were visualized using maestro and pymol.
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Figure 3

Schematic representation of molecular docking between Mpro and top four natural compounds; (A) interaction between Mpro and Amento�avone with -9.96
kcal/mol docking energy; (B) interaction between Mpro and Guggulsterone with docking energy -9.67 kcal/mol; (C) interaction between Mpro and Puerarin
with -8.67 kcal/mol docking energy; (D) interaction between Mpro and Piperine with -8.05 kcal/mol docking energy. Interactions were visualized using
Interactions were visualized using maestro and pymol.
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Figure 4

Histogram showing molecular docking results between COVID-19 main protease Mpro (PDB-6LU7) and selected natural compounds (the binding energy
value ΔG is shown in minus kcal/mol), *Reference compounds.

Figure 5

Top-15 of Target Predicted for Amento�avone and Guggulsterone
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Figure 6

Flow chart of pipeline utilized in present study.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

table6.pdf

table5.pdf

table3.pdf

table2.pdf

https://assets.researchsquare.com/files/rs-22839/v2/table6.pdf
https://assets.researchsquare.com/files/rs-22839/v2/table5.pdf
https://assets.researchsquare.com/files/rs-22839/v2/table3.pdf
https://assets.researchsquare.com/files/rs-22839/v2/table2.pdf

